IFE–SUNGBO
ARCHAEOLOGICAL
PROJECT

PRELIMINARY REPORT ON
EXCAVATIONS AT ITA YEMOO,
ILE-IFE, OSUN STATE AND ON RAPID
ASSESSMENT OF EARTHWORK SITES AT
EREDO AND ILARA-EPE, LAGOS STATE
JUNE–JULY 2015

DIRECTORS:
GÉRARD L. CHOUIN, PhD
ADISA B. OGFUNFOLAKAN, PhD

MAIN ACADEMIC PARTNERS

MAIN FUNDING AGENCY

OTHER SPONSORS AND PARTNERS
Table of Contents

Executive summary ... 2

Introduction .. 3

A. Partnerships and funding ... 3
 A.1 Individual and institutional partners .. 3
 A.2 Funding ... 4

B. Background: The archaeology of Ile-Ife and Sungbo’s Eredo .. 5
 B.1 Ile-Ife .. 5
 B.2 Sungbo’s Eredo .. 8

C. The Ife–Sungbo Archaeological Project: Aims and objectives ... 9
 C.1 Aims .. 9
 C.2 Objectives ... 9

D. Archaeology: Season I ... 10
 D.1 Excavations at Ita Yemoo ... 10
 D.1.1 Excavation units and methodology ... 10
 D.1.2 Depositional history of the Ita Yemoo embankment based on units A, B, D, and F 16
 D.1.3 Additional stratigraphic data from Unit C ... 20
 D.1.4 Potsherd pavements at Ita Yemoo and beyond .. 24
 D.2 Reconnaissance of Sungbo’s Eredo: Plans for Summer 2016 .. 25
 D.2.1 Sungbo’s Eredo at Oke Eri ... 25
 D.2.2 Sungbo’s Eredo at Eredo and Ilara-Epe ... 28

E. Archival research ... 29
 E.1 Ile-Ife court records ... 29
 E.2 Papers of Professor Frank Willett, University of Glasgow .. 30

F. On-going and projected analyses .. 32
 F.1 Sedimentology .. 32
 F.2 Radiocarbon dating ... 32
 F.3 Glass analysis ... 32
 F.4 Local ceramic analysis .. 32

G. Output .. 32

H. References .. 33
Executive summary

The Ife–Sungbo Archaeological Project explores new perspectives on the history and chronology of the urbanization and socio-political dynamics of the forests of West Africa. It is key to the on-going re-assessment of the chronology of urban development in the humid forests of the Gulf of Guinea. Often forgotten in mainstream African historiography, the Guinean tropical forests witnessed the rise and decline of major demographic and civilizational centers, before the opening of the Atlantic trade in the 15th century CE. We focus on 1) the town of Ile-Ife, mythic center of the Yoruba civilization and a major archaeological site; and 2) the monumental enclosure of Sungbo’s Eredo, a system of banks and ditches now lost under dense forest cover. We aim at documenting, dating, and replacing these forgotten sites into their context.

The first season of the project took place from June 1 to July 5, 2015. The team of 35, led by Gérard Chouin (Department of History, William & Mary, USA) and Adisa Ogunfolakan (Director of the Natural History Museum, Obafemi Awolowo University, Ile-Ife, Nigeria), included professional archaeologists, students, and volunteers from Nigeria, USA, France, and the UK. The main funding was provided by the French Ministry of Foreign Affairs, with additional support from a variety of partners, including William & Mary and Total Nigeria PLC.

The focus of this first archaeological season was the ancient embankment system of the city Ile-Ife, specifically a section of the system located on Federal lands at Ita Yemoo. The site was already the focus of archaeological work by British archaeologist Frank Willett in 1957–8 and 1962–3, but his findings have remained largely unpublished. Our objectives were to re-excavate the city walls and to retrieve the notes of Willett. Both objectives were successfully completed. Several trenches were sunk into the Ita Yemoo embankment, which resulted in a reconstruction of the depositional history of the site in 8 different phases over more than a millennium. In addition, materials left behind by Willett, including photographs, sketches, and excavation records, were located in the archives of the Hunterian Museum, University of Glasgow. The comparative analysis of both sets of data will uniquely contribute to a clearer understanding of the archaeology of this major ancient city.

Several other sites were visited in preparation for the 2016 season, which will focus on a 170 km-long embankment (Sungbo’s Eredo) that encircled an ancient polity just north of modern Lagos. Three different portions of this monumental site were rapidly assessed. Charcoal samples were collected to assist with the dating of these massive but under-studied systems of ditches and banks. Photography drones were used to assist in the reconnaissance of the embankment and enabled us to identify archaeological features that had never before been noticed. A site located within the campus of the newly built Augustine University at Ilara, Lagos State, was selected as a primary focus for the 2016 excavation season.

We expect to publish our findings after a careful analysis of the different sets of data recovered during this first season. With the generous support of our academic partners, we processed 11 radiocarbon dates that support the interpretation of our data.
Introduction
The first season of the Ife–Sungbo Archaeological Project took place from June 1 to July 5, 2015. The main objective of the project was to contribute to a reconstruction of the long-term chronology of Ile-Ife’s urbanization process through a study of its embankment system and to assess the hypothesis of a demographic crisis affecting the city in the 14th century CE. Several sections of the embankment are still visible at Ile-Ife, although most parts have now been totally destroyed or obliterated by urban development. During the first season, our main focus was the site of Ita Yemoo, where a series of excavations were conducted in 1957–8 and 1962–3. Located within the compound of the Ile-Ife Pottery Museum, an annex to the National Museum of Ile-Ife, the site includes a section of one of the ancient outer embankments of the town. A secondary focus was to identify a site in preparation for the 2016 archaeological season.

In this report, we first describe the partnerships that made this project a reality and describe the work undertaken by the team. We provide a background discussion on the archaeology of Ile-Ife and Sungbo’s Eredo before discussing our preliminary findings based on the stratigraphic information retrieved from the Ita Yemoo embankment. We divide the depositional history of the site into 6 different phases, from the medieval period to the present, and suggest a chronological framework emerging from a series of radiocarbon dates. In addition, we discuss the exciting rediscovery of Frank Willett’s papers and photographs related to the unpublished excavation of Ile-Ife’s city walls at Ita Yemoo in the archives of the Hunterian Museum, University of Glasgow. We intend to fully integrate these unpublished records into our final study of the site. Finally, we report on our rapid reconnaissance of sections of the south-eastern part of Sungbo’s Eredo, which enabled us to identify one particularly interesting site to become the main focus of the second stage of the Ife–Sungbo Archaeological Project, in 2016.

A. Partnerships and funding

A.1 Individual and institutional partners
Three institutions are at the core of funding this project: William & Mary (Virginia, USA); the Obafemi Awolowo University (OAU) (Ile Ife, Osun State, Nigeria); and the University of Ibadan (UI) (Ibadan, Oyo State, Nigeria).

The project was initiated by Gérard Chouin, Lyon G. Tyler Department of History, William & Mary, in partnership with Adisa Ogunfolakan, Director of the Natural History Museum, OAU. They were joined by Jonathan O. Aleru, Chair of the Department of Archaeology and Anthropology, University of Ibadan and David A. Aremu, Professor of African Archaeology. The Natural History Museum, OAU, provided facilities, equipment, logistics, and institutional support to the project, as well as technical and scientific expertise: botanical species on each side of the bank were identified or are still in the process of being identified by Mrs. Bamigboye Adebola; and a team comprising Peter Dada, Olufemi Olaleye-Otunla, and Adeoba Obadare prepared a site map. Segun Moyib,
Adegoke Niyi, Akinbowale Akintayo, Lasisi Olanrewaju, Oluwadamilare Omogbai, Muhammedthanni Olagoke Somotan, Sharon Nworgu, Adigun Omolaba, Adisa Ogunfolakan, and Kolawole Adekola were the faculty, graduate students, and alumni from the University of Ibadan who served as field archaeologists.

A 2D electrical subsurface imaging survey of the trench and banks was conducted by Ademakinwa G. Oni and Michael O. Okunubi, two graduate students from the Department of Geology, OAU, under the supervision of Professor M. O. Olorunfemi.

The project was placed under the umbrella of the National Commission for Museums and Monuments (NCMM) at Abuja, which granted the permit to excavate the archaeological sites. Access to the site, supervision of the excavations, and facilitation were provided by the team of curators and heritage officers from the National Museum at Ile-Ife, the local branch of the NCMM, namely Enadeghie Ezomo, Salami Tajudeen, Adesiyan Ademola, Tanimola Omotola Bayo, and Grace Oladeji.

The French National Institute for Research on Preventive Archaeology (INRAP) contributed to the project through the presence of two French professional archaeologists (Patrice Georges and Bertrand Poissonnier), who were permitted to spend two weeks in the field.

Finally, the University of Paris-I, University of Paris VI, UMR 7041 (ARSCAN, Nanterre, France) and UMR 8171 (IMAf, Paris, France) were also involved through the participation of Alain Person and Gérard Chouin, as well as two French undergraduate students, Léa Roth and Jules Frémeaux.

In all, no fewer than 35 scientists, students, curators, technicians, logisticians, and drivers were directly involved in the project. We owe a special mention to the project field coordinator Joseph Ayodokun, who worked tirelessly to ensure the success of the project and the security of all. We also need to mention the support received since the early stages of the project from Michael Pride and Guus Hak, two gentlemen entrepreneurs with a keen interest in conservation and heritage.

A.2 Funding
Core funding for the project was granted by the Department for Archaeology, Social Sciences and Humanities of the French Ministry of Foreign Affairs and International Development in response to a proposal submitted in October 2014 by Gérard Chouin and Adisa Ogunfolakan.

Additional funding was provided as follows: 1) ANR Globafrica Project (ANR-14-CE31-0015); 2) Office of the Dean of Graduate Studies and Research, College of Arts & Sciences, William & Mary for the purchase of two laptop computers; 3) Office of the Vice Provost for Research and Graduate/Professional Studies through the Department of Physics for the purchase of two photography drones with traveling kit and tablets; 4) Summer Research Award granted to Gérard Chouin through the Office of the Provost, William & Mary; 5) Professional Development funds granted to Gérard Chouin, Lyon G.
Tyler Department of History, William & Mary; 6) Charles Center Summer Scholarship Award, William & Mary, to James Renton, one of the undergraduate students participating in the project; 7) Tyler Scholarship for undergraduate research granted to the same James Renton by the Lyon G. Tyler Department of History, William & Mary; 8) Total Nigeria for the provision of logistical support in Lagos to international members of the team, as well as diesel for the generator of the Natural Science Museum, OAU; 9) Department of Archaeology and Anthropology, UI, for part of the fieldwork expenses of a group of 4 graduate students; 10) French Institute for Research in Nigeria (IFRA-Nigeria) for administrative and logistical support, including transportation of part of the team from Lagos to Ile-Ife; 11) private funds from Gérard Chouin and other field archaeologists, namely Léa Roth, Jules Frémeaux, Segun Moyib, Adegoke Niyi, Akinbowale Akintayo, Lasisi Olanrewaju, Oluwadamilare Omogbai, Muhammedthanni Olagoke Somotan, Sharon Nworgu, Adigun Omolabake, David Aremu, and Jonathan Aleru, who covered all or part of their expenses.

B. Background: The archaeology of Ile-Ife and Sungbo’s Eredo

B. 1 Ile-Ife

In south-western Nigeria, most Yoruba persons recognize Ile-Ife as a remote ancestral home and the cradle of their civilization (Fig. 1).

Fig. 1: Site map of documented city walls in the West African forest belt.
According to a widespread myth of creation, it was at Ile-Ife that mankind was molded, and this ancestral home is the ‘source’ whence all arts, civilization, and dynasties originated. It is also a privileged point of contact between the human and invisible realms, a place that inspires fear and respect, where the spirits of the deceased return and actively influence the world of the living. The town was, and still is, characterized by its large number of shrines attracting devotees from far away. Successful shrines like that of Ifa, with its initiates trained in well-codified divination and healing techniques, exported their practice far beyond Yorubaland. Ile-Ife is a spiritual and a political center, a place where power and the sacred became entangled in inextricable ways over a very long period. It is, as such, the ideal place in which to research the chronology and process of urbanization in the forest belt of West Africa.

The key to Ile-Ife’s reputation and success is its unfathomable history. The town is considered one of the oldest cities in the Guinean forest and is home to one of the most complex and detailed corpora in West Africa of orally transmitted myths, stories, and historical accounts of the past. From an archaeological perspective, it has also long been recognized as one of the earliest urban centers in the tropical forests of West Africa, home to one of the most intriguing civilizations of the Old World.

In 1910, Frobenius was one of the first European scholars to uncover its rich terracotta and copper/brass statuary tradition (Frobenius, 1913). In 1938 and 1939, the discovery in the courtyard of the Wunmonije compound of an impressive series of copper/brass heads turned the European perception of African artistry upside down (Bascom, 1938; Willett, 1960). This inaugurated an impressive series of fortuitous, fabulous discoveries of artworks when laborers were digging with the purpose of transforming the old town into a modern colonial city.

Professional archaeology was introduced into the town by the colonial administration in the late 1940s, with the posting of Bernard Fagg—otherwise known for encountering the Nok culture of north-central Nigeria—as the representative of the newly formed Department of Antiquities. The first test units were opened under his supervision in 1949 (Willett, 1960: 239). The primary objective of archaeology at the time, however, remained focused on the unearthing and documentation of exceptional objects rather than their contexts. Such was still the case in 1953, when a systematic campaign was organized to explore the city with the digging of 80 ‘well-shafts’ distributed across the town and its sacred sites, including Osangangan Obamakin, Ogunladi, Olokun Walode, and the Olokun grove, the latter having been previously excavated by Frobenius. These excavations did not result in any publications (Willett, 1960: 240-241).

Better standards were imposed by Willett when he excavated the site of Ita Yemoo or Yemoo grove, after laborers had discovered remarkable bronze objects in November 1957 while digging foundations for a new projected building (Willett, 2014: I.2). Work was discontinued and the land purchased by the government to become an archaeological reserve under the authority of the Department of Antiquities. Willett excavated what he interpreted as being at least two shrine complexes which contained brass and terracotta
objects lying on fragments of potsherd pavements. These objects soon became iconic of Ile-Ife’s art. A complete potsherd pavement was uncovered at a short distance from the original construction site. It was preserved under a solid open shed which still stands today (Willett, 1959a; 1959b; 2004: I.2). Unfortunately, we were unable to find a site map and, with the exception of the shed already mentioned, we do not know the exact areas Willett excavated within the Ita Yemoo compound.

Potsherd pavements are an intriguing witness to the ways urban spaces were organized and built in West Africa, and particularly in Yorubaland (Aguigah, 1995). At Ile-Ife, fragments of potsherd pavements can still be seen within a radius of at least 6 km from the modern center of the town (Willett, 2004: I.2). If better understood, they could become effective chronological indicators of urbanization in the region. They are in urgent need of documentation, as they are fast disappearing from the modern urban landscape.

In 1960, as Nigeria was celebrating her accession to independence, Willett published the first synthesis of the archaeology of Ife in the form of an article in the newly created *Journal of African History*. However, at a period when African Art was becoming fashionable, he soon chose to “concentrate excavations on his ethnographic and art interests” (Graham Connah, P.C., August 2015) and eventually accepted a position at Northwestern University as a professor of African Art and Archaeology in 1966. His subsequent career was that of an art historian, and his excavations were never properly published. In fact, archaeology occupied little more than a marginal role in his first important monograph published in 1967.

In 1969, Paul Ozanne published a new synthesis with a particular focus on the chronology of Ile’s town walls. Building on an earlier map published by Willett in his 1967 monograph, he proposed a topographical and chronological model that remained a baseline for subsequent similar projects (see for instance, Willett, 2004), especially since a substantial part of the walls have since been destroyed in the process of urban land development. The following year, Ekpo Eyo (1970), also an art historian, published the results of a first series of the excavation of a new series of terracottas at Lafogido. Similar works with a stronger emphasis on sculptures than on the archaeological context followed in subsequent years (Eyo, 1974; Eluyemi, 1975). In this context, Garlake is the only scholar that emerges as a professional archaeologist, with two detailed studies of the excavations of two ancient pavement sites associated with ritual deposits at Obalara (1974) and Woye Asiri Family Land (1977). In spite of the intriguing light these excavations shed on a possible break in ancient Ile-Ife’s occupation at the turn of the 15th century CE, they contributed only marginally to the long-term chronology of the town. However, they did provide strong evidence for the use of potsherd pavements at Ife between the 12th and 14th centuries CE. In contrast, the presence of maize impressions on potsherds used in other documented pavements allows us to say that the latter were in use at least until Early Modern times (Willett, 1962; Stanton and Willett, 1963).

In the 1980s, Ife disappeared from the front stage of African archaeology. Small-scale archaeological projects then focused on questions relative to the industrial production of
glass beads (Adeduntan, 1985; Oluyemi, 1987; Lankton et al., 2006; Babalola, 2011,
2015). New projects led by Adisa Ogunfolakan, Akin Ogundiran, Babatunde Babalola,
and Gérard Chouin, however, are paving the way to a reinstatement of Ife as a central
locus in African history and archaeology. A recent book by art historian Suzanne P. Blier
(2015) has already opened the door to a multi-disciplinary re-examination of Ife as a
gateway to a better understanding of the urban civilization that developed in the West
African Guinean forests in medieval times.

B.2 Sungbo’s Eredo
A few tens of kilometers north-east of Lagos metropolis, the economic hub of Nigeria,
monumental embankments criss-cross a landscape of open fields and disappear under
thick tropical vegetation cover (Fig. 2). These little-known markers of a once densely
populated part of the African rainforest may hold the key to a radical reinterpretation of
our understanding of historical developments in tropical Africa before the opening of the
Atlantic trade.

Fig. 2: Location of Sungbo’s Eredo, south-western Nigeria.

Located in the heart of Ijebuland, straddling the states of Lagos and Ogun and 170 km in
length, Sungbo’s Eredo is one of the largest rammed-earthwalls (Blench, 2014) ever built
on Earth, enclosing an area of approximately 1,025 sq km. Today, this monument is up for
consideration as a UNESCO World Heritage Site and is currently on Nigeria’s “Tentative
list.” Similar to that at Ile-Ife, the earthwork is made of a system of ditches and banks but with far greater dimensions, such as the 20 m deep ditch still visible on the outskirts of the town of Eredo in the northern part of Lagos State. This massive enclosure testifies to the will of an ancient community to delimit a specific territory in monumental ways, possibly as a way to express their belonging to a polity or at least a specific part of a polity. The lack of specific oral traditions about the enclosure suggests that it belongs to the very remote past. This seems to be confirmed by radiocarbon dates obtained by Darling and Ogiogwa from different parts of the monuments, pointing to the 11th–13th centuries CE (Chouin, 2014: 43). Other radiocarbon dates, obtained from the monument at Oke Eri in Ogun State by a team led by Aremu, point towards much earlier dates, a few thousand years BCE. Recent controversies have emerged as a result concerning the chronology of Sungbo’s Eredo and its place in the long-term history of Sub-Saharan Africa (see for instance Aremu et al., 2013). Overall, such controversies seem to be grounded in ideological pursuits, on the one hand, and on insufficient stratigraphic and geomorphological understanding of the banks from which radiocarbon samples were taken, on the other. Only two test units have been excavated so far by Aremu’s team at Oke Eri, and comparative data is needed from other parts of the earthwall. Also, the sketch map of Sungbo’s Eredo prepared by Darling (1997, 2001) on the basis of a long and difficult field prospection campaign in a very difficult environment remains the only one available to date and is probably not a true reflection of the complex, as shown by a close study of satellite imagery. Much is left to be done at Sungbo’s Eredo, and providing new data is a key aspect of the Ife–Sungbo Archaeological Project.

C. The Ife–Sungbo Archaeological Project: Aims and objectives

C.1 Aims
Two main aims have been defined for this project:

- To contribute to the documentation of the endangered medieval rammed-earthwalls in relation to the site of Ile-Ife and Sungbo’s Eredo through the development of a strategy appropriate to the urban and/or forested environment that characterize these sites.

- To reconstruct a chronology and to understand the main phases of development of 1) the ancient city of Ile-Ife, and 2) the massive earthworks of Sungbo’s Eredo.

C.2 Objectives
Three main objectives have been defined in order to meet the aims described above:

- To re-evaluate the map of the city walls of Ile-Ife first produced in the 1960s and its last avatar published by Willett in 2004, by means of the following: 1) a series of surveys with a hand-held GPS to record the position of the remains of alleged walls; 2) a re-examination of ancient air photographs and other images produced
by a variety of remote-sensing technologies, including drones; and 3) subsurface imaging and excavation of a limited number of sites that will be identified in the course of the research.

- To excavate the remains of several of the city walls. We will document the long-term history of the ditches and bank systems (construction, abandonment, silting, filling) as a reflection of the city’s expansion and contraction in time. In an echo of Garlake’s excavations at Obalara and Wore Siri Family Land, we will determine in particular whether the archaeological record shows evidence of a crisis in the 14th century CE leading to a drastic change in the occupational history of the site.

- To excavate a portion of the Sungbo’s Eredo enclosure. We will also conduct a geomorphological study of the bank and ditch system and establish a series of radiocarbon dates to better understand the chronology of the monument. We will also use photography drones to survey selected parts of the enclosure and examine other archaeological features possibly associated with them.

D. Archaeology: Season I

D.1 Excavations at Ita Yemoo

D.1.1 Excavation units and methodology
The Ita Yemoo compound excavated by Willett in the late 1950s is now a Federal property under the NCMM. Besides a Pottery Museum, a hall, a kitchen, a public toilet, and a number of administrative buildings built over time, it includes a shed covering a potsherd pavement and a segment of one of the town’s walls (see Fig. 3). The Federal status of the land made excavations much simpler than if we had had to work on private lands. This, together with the presence of a trench system at Ita Yemoo, explains our choice of this site for the first phase of the project.
The first phase of the work was the clearing of a thick grove of banana trees that covered the site. This was undertaken during our first week at Ile-Ife, in three days, by a team of laborers recruited by the staff of the museum (Fig. 4).
By the time we started the excavation, we were aware that previous excavations of the embankment had been conducted by Willett, but we had no access to a site map or even to photographs or detailed reports. In fact, we had no idea of the exact part Willett had excavated. We planned the excavation surmising that an oblong perimeter across the southern bank of the wall, delimited by a cement and stone wall of the same nature as the shade built to protect the pavement, was a marker of the area where Willett positioned his trench (Fig. 5).
This later proved to be a mistake when we eventually encountered the eastern limit of Willett’s trench in our Unit C (Fig. 6), well away from the alleged marker. In fact, no specific marker of Willett’s excavations has survived until today. It was only after our departure from Nigeria that we obtained more details about Willett’s excavations of the wall (see below, Section E.2).

On the basis of the relative depth of deposits suggested by a first geoelectrical survey conducted by a team from the Department of Geology of OAU on 6–7 June 2015 (Olorunfemi et al., 2015), we decided to focus on two specific areas of the embankment (see site map, Fig. 8). We first opened a 2x1 m unit at the bottom of the ditch (Unit A) and two 2x1 m units (units B and C1) on the southern bank. Excavations started on June 10, 2015 with units A and B. Unit C1 was opened the following day.
Unit C2 was an extension of Unit C1 we opened on June 20 to get a better understanding of a potsherd pavement and alignment of stones found both at the same level at approximately 130 cm below the surface in the latter unit. Unit C2 consisted of a 2x1 unit parallel to Unit C1 on its eastern side and separated from it by a 50 cm-wide berm (Fig. 7).

The berm (C3) was eventually removed on June 24, 2015, after we had reached the same level 13 (130 cm below the surface) in Unit C2 as in Unit C1. Under level 13, the larger unit, now 2 m x 2.5 m became Unit C4. On June 17, 2015, following the arrival at Ile-Ife of INRAP archaeologists Patrice Georges and Bertrand Poissonnier, we decided to open a 1 m-wide trench (Unit D) perpendicular to the embankment, starting 50 cm from the northern wall of Unit B and extending to the southern edge of Unit A. Unit F was a second trench 1 m wide dug in the continuation of Unit D, starting at the northern edge of Unit A and extending across the northern bank. Finally, Unit E was a 1x1 m unit delimited over a small fragment of pavement found approximately 20 m south of Unit B. Unit E was not excavated. The relative position of the different units is indicated on the site plan (Fig. 8).
Two methods were used to maximize the relatively short period of time available for excavations. In some units (A, B, C1/C4), we proceeded in 10 cm arbitrary spits with natural levels until culturally sterile soil was reached. Soil removed was systematically...
screened for artifacts using \(\frac{1}{8}\) inch mesh. Units C2, C3, D, and F were not dug following the same stratigraphic method. They were dug quickly and with a specific purpose: either to enlarge an already existing unit to expose a particular level (units C2 and C3), or to enable us to recover a complete stratigraphic profile across the embankment (units D and F). Charcoal samples used for radiocarbon dating were systematically taken from the stratigraphic profiles after we had drawn them.

D.1.2 Depositional history of the Ita Yemoo embankment based on units A, B, D, and F

The excavation of units A, B, D, and F enabled us to get a complete stratigraphic profile of the embankment, which can be compared with the profile prepared by Willett and published solely on his 2004 CD-Rom (Fig. 9). Importantly, Willett’s drawing of the section of the embankment was unknown to us as we prepared our own. These are therefore completely independent representations of the stratigraphy of the wall of Ita Yemoo, drawn more than 50 years apart. They will be discussed in detail in a separate paper that will compare Willett’s material and our own. In the meantime, it is worth noting that we believe both profiles (ours and Willett’s) support the depositional history detailed below and characterized by the presence of one ditch cutting through a medieval and post-medieval level and two banks sealing the latter.

![Stratigraphic profile of trench excavated through Ile-Ife’s embankment by Frank Willett, 1961–2 © Frank Willett (in Willett, 2004)](image)

Interpreting his profile of the city wall, Willett was of the opinion that “the excavation gave no evidence at all of two phases of construction” (Willett, 2004: I.2). Ozanne, who was given access to Willett’s unpublished stratigraphic drawing as he was preparing his important 1969 article on the city walls of Ife, was of a radically different opinion: “This wall was originally built in Phase 2 of the Medieval Period, and was reconstructed as Phase 2 of the Modern system” (Ozanne, 1969: 36). In fact, Ozanne did not support his
interpretation with any specific comments, and we are left to believe that he made a different reading of the stratigraphic profile than Willett, its author.

Our final reading of Willett’s drawing and of our own stratigraphic profile (Fig. 10) of the embankment, informed by a new series of three radiocarbon dates, confirms Willett’s interpretation that there is only one ditch and bank system at Ita Yemoo. Consequently, Ozanne’s chronological framework, which places the original construction of the wall in the second phase of his medieval period—which he awkwardly placed in the 17th century CE—can no longer be considered as a viable alternative interpretation. Moreover, our data strongly suggest that Ozanne’s suggestion that the same embankment was (re)constructed during a period between 1720 and about 1847, before the foundation of the Modakeke settlement (Ozanne, 1969: 41-42), is also inaccurate. Rather, our study confirms local historical reports pointing to a more recent construction of the wall system by Ooni Abeweila in 1848/9. This debate, which began in the 1960s, can now be considered definitively closed.

Fig. 10: Stratigraphic profile of trench dug through the embankment by the Ife–Sungbo Archaeological Project, 2015 © Ife-Sungbo Archaeological Project (prepared by Bertrand Poissonnier, INRAP)

It is worth noting, however, that our profile shows the trench was silted and had to be partially dug again at some point. The limit of this later intervention is depicted in Fig. 10 by a yellow dashed line. Such work would have taken place during the last few decades of the 19th century, a particularly traumatic period in the history of Ife. The resulting trench was in turn filled in in the course of the 20th century.

1 See below the discussion of Beta-423715, Beta-423716, and Beta-423717. In all fairness, it should be noted that our first interpretation of the stratigraphic profile also supported the theory of a double ditch, but radiocarbon dates of a series of charcoal samples from Unit A proved us wrong, forcing us to reconsider our interpretation of the depositional history of the site at Ita Yemoo.
Willett’s excavations of Ile-Ife’s embankment at Ita Yemoo and his interpretation of the stratigraphic evidence had little impact on the historiography of Ile-Ife—since the details were not published before 2004, and his 2004 material was available only on CD-ROM and remained marginally accessible. With the present project, we expect to be more successful in building a new understanding of the stratigraphy of the Ita Yemoo site, supported by a comprehensive range of radiocarbon dates. This will contribute decisively to the history and chronology of the town and will remain a long-lasting, important contribution to the archaeology and historiography of south-western Nigeria.

We processed 8 samples for radiocarbon dating, 3 from Unit A and 5 from Unit C. Before the receipt of the supplemental funds that allowed us to proceed with the dating, we had circulated a provisional narrative of the depositional history of the embankment, based on our preliminary study of the stratigraphy. The 8 radiocarbon dates have confirmed some of our interpretations while invalidating others. We now think the depositional history of the site of Ita Yemoo can firmly be divided into 6 distinct phases, redefined as follows:

Phase I: This is an undated and tentative early phase that is not represented in our 2015 excavation but may be documented in Willett’s stratigraphic drawings of his 1962 excavation in the form of a series of wells and shallow pits below the banks.

Phase II: This was characterized by a period of occupation of the area, during the 13th century. It was only clearly documented in Unit C and we shall discuss it in detail below.

Phase III: This was characterized by the possible destruction, abandonment, and/or transformation into a sacred grove of the previous levels of occupation. Like Phase II, it was not very clearly documented in units A, B, D, and F and will be discussed in the section focusing on Unit C.

Phase IV: The ditch was dug into lateritic, degraded bedrock as well as deposits probably accumulated during Phase II. The southern wall of the ditch has a distinctive stepped profile, which also appeared clearly on the image generated by the resistivity survey (Fig. 11). The southern side of the ditch was occupied by a bank that sealed levels representative of earlier phases. Another (lower) bank stood on the northern side of the ditch. Beta-423715 (160±30BP) was obtained from a charcoal sample collected at the bottom of the ditch, just above undisturbed layers, at a depth of 2.07 m above the modern surface. The most probable calibrated interval at 2σ is 1802–1938 CE (1812–1891 CE, at 1σ). It suggests that the embankment system was indeed dug in the 19th century, perhaps after 1836, as Ile-Ife became engulfed in conflicts that followed the collapse of the capital of the Oyo Empire. Our results do not contradict the local historical attribution of the embankment to Ooni Abeweila, who is said to have ordered the construction of the wall in about 1848/9.
Phase V: Collapse of bank / silting of ditch. The beginning of Phase V is marked by the presence at the bottom of Ditch I of a thick layer of compact, reddish clay characterized by a north–south slope (layer 27). We interpreted this layer as resulting from the collapse of the northern bank into Ditch I, as perfectly illustrated by layer 36. It is not clear when this event took place. Beta-423717 (160±30BP) was obtained from a charcoal sample collected at 1.7 m below the present surface of the filling of the ditch. The calibrated intervals indicate the sample could belong to a period between the 17th century CE and the post-1950 era. It therefore offers little help in providing a strong understanding of the chronology of the filling of the ditch. In fact, the sample could have been washed away by the rains from a different context. The most convincing scenario, however, is that of a fairly recent silting of the ditch, probably in the decades that followed its construction.

Phase VI: Shallow desilting of the ditch. Our stratigraphic section shows clearly an attempt at reshaping the trench by removing some of the recent silting (Fig. 10, feature 51). This probably took place between the last decades of the 19th century and the mid-20th century.

Phase VII: Beta-423716 (156.6±0.4pMC) was obtained from a charcoal sample collected at 88 cm below the present surface of the filling of the ditch. It is less than 60 years old, indicative that the last episode of filling probably began in the second half of the 20th century CE, especially after 1970, as we found a thick layer of modern domestic and industrial trash from the surface to about 90 cm below the modern surface of the filling of the ditch.
D.1.3 Additional stratigraphic data from Unit C

The excavation of Unit C enabled us to gain a unique insight into the depositional history of the Ita Yemoo embankment. Incidentally, Unit C intersected slightly with the trench opened by Willett through the bank and ditch system. As explained above, we had no clue to the location of Willett’s trench, but we started having suspicions when we realized that there was a 10 cm-wide trench-like feature running along the western wall of Unit C. Suspicions grew even stronger when we excavated a small potsherd pavement that seemed to be very neatly cut by the same trench (see Fig. 12). Unpublished photographs of Willett’s excavations we discovered after the excavations (see below, Section E2) demonstrated that the fragment of potsherd pavement we had found was the eastern continuation (and extremity) of that excavated by Willett under the southern bank.

This coincidence made Unit C particularly useful, because in addition to our stratigraphic observations, it will enable us to make sense of unpublished data collected by Willett. Time constraints, however, did not permit us to reach subsoil; we need to consider the possibility to reopen the unit during the next season to complete our understanding of the feature (pit)\(^2\) in relation to the layers of occupation found under the potsherd pavement and to the embankment. The stratigraphic relation between the pit and the pavement is illustrated by Fig. 13.

\(^2\) In a previous version of this report, this feature had been interpreted as an earlier ditch system. The new understanding of the depositional history of the site, emerging from the radiocarbon dates discussed in D.1.2, has led us to amend this former interpretation.
Excavations in Unit C enabled us to retrieve the southern edge of a pit that seems to have been a trash pit for domestic refuse. Excavations confirmed the scenario for Phases II to III, while providing additional data as outlined below:

Phase II: The earliest deposits discovered on the southern edge of the ditch were a series of horizontal levels characterized by brown-reddish clay, flat potsherds, and abundant charcoals. These layers were first interpreted as possible living surfaces but are now understood as discrete layers of refuse within a trash pit. The bottom of the trash pit was not reached at the end of the season, and we had to stop the excavation at a depth of about 220 cm near the northern profile. These layers were covered by a potsherd pavement on the south-eastern side of the unit and by a surface covered by scattered medium-size stones on the western side. The pavement is positioned at the same relative level as the one excavated by Willett in the late 1950s and now protected by the built shade, and these pavements are probably contemporaneous. The pavement is also found at the same level as the stones and seems to have been part of the same feature. The re-exavagation of this
unit in 2016 should enable us to better understand the stratigraphic relationship between the different levels. We processed 5 samples of charcoal fragments recovered at several depths in the western and northern profiles of Unit C, corresponding to Phase II. All the samples were collected between 2 cm and 70 cm below the pavement, and all provided results coherent with the first half of the 13th century for the refuse deposit found under the pavement (see Table 1). Beta-423710 corresponds to a sample collected just under the pavement. It is the only sample in our collection that was not directly associated with the refuse accumulation but rather with the layer of clay that serves as foundation to the pavement. Beta-423710 is slightly earlier than the other dates, suggesting it might have been part of the clay deposit that was used to prepare the surface on which the potsherd pavement was laid. Although we are unable to date the pavement as such, all evidence suggests it was built after the 1220s and probably not long after the final deposit of ashes on the underlying refuse accumulation, signaled by Beta-423711 and dated at 1σ to the period 1220–1265 CE.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Depth under pavement (cm)</th>
<th>Conventional radiocarbon age</th>
<th>Calibrated results at 2σ</th>
<th>Calibrated results at 1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-423710</td>
<td>2</td>
<td>890±30 BP</td>
<td>1116–1217 CE (63%)</td>
<td>1196–1206 CE (9%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1041–1107 CE (37%)</td>
<td>1151–1194 CE (49%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1127–1135 CE (7%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1050–1082 CE (35%)</td>
</tr>
<tr>
<td>Beta-423711</td>
<td>20</td>
<td>800±30 BP</td>
<td>1184–1275 CE (100%)</td>
<td>1220–1261 CE (100%)</td>
</tr>
<tr>
<td>Beta-423713</td>
<td>50</td>
<td>860±30 BP</td>
<td>1150–1256 CE (88%)</td>
<td>1160–1218 CE (100%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1124–1136 CE (2%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1049–1084 CE (10%)</td>
<td></td>
</tr>
<tr>
<td>Beta-423712</td>
<td>60</td>
<td>770±30 BP</td>
<td>1217–1281 CE (100%)</td>
<td>1225–1232 CE (13%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta-423714</td>
<td>70</td>
<td>800±30 BP</td>
<td>1184–1275 CE (100%)</td>
<td>1220–1261 CE (100%)</td>
</tr>
</tbody>
</table>

Table 1: Radiocarbon dates from Unit C at Ita Yemoo

Phase III: Unit C provides us with an interesting window into a process of transformation of the area that took place between the laying of the pavement and the building of the bank associated with the 19th century trench. During excavations, we discovered that the level of the pavement was separated from the level...
corresponding to the construction of the bank by a 30–35 cm thick layer of dark brown, sandy soil, rich in organic matter and charcoal. We believe this layer corresponds to a period between the abandonment of the pavement level and the construction of the new embankment, when the area became a sacred place and vegetation was allowed to grow. In essence, we believe that this horizon is an archaeological marker of the selection of this space and its transformation into a sacred area that came to be known as the Ita Yemoo sacred grove (Fig. 14). In 2016, we intend to collect soil samples from this layer to understand better the passage from an inhabited space to a sacred grove. Why was the site abandoned? What were the conditions of such abandonment? Can this layer help us understand when the site was finally abandoned?

Fig. 14: Northern wall of Unit C showing a horizon rich in organic material just above the level of the potsherd pavement © Ife-Sungbo Archaeological Project
D.1.4 Potsherd pavements at Ita Yemoo and beyond

During our stay, we invested some of our resources in clearing and documenting some of the many fragments of potsherd pavements still visible at Ita Yemoo. For instance, we exposed a little-known pavement covering a surface of approximately 15 sq m near the main entrance of the compound, where vehicles are usually parked. No excavation was conducted, and the work consisted mainly in cleaning the surface to make the potsherds everywhere visible.

The large pavement cleared by Willett in 1957–8 and now protected under a shed was cleaned and inspected. Our attention focused on the north-western part of the pavement, which seems to have been the focus of some archaeological investigations at different periods in time. The first of these seems to have been carried out by Willett during his 1962–3 excavation season at Ita Yemoo. He reported investigating “a depression at one corner”, which we believe coincides with the north-western corner of the pavement. He reported finding “that a large pit lay underneath it, though this did not seem to be the cause of the subsidence because a pavement made of quartz pebbles which lay 14 inches (35 cm) beneath the potsherd pavement was still perfectly intact.” He added that the depression had been “deliberately made” (Willett, 2004: I-2). This was an intriguing discovery that deserved more than a couple of lines. The presence of a pavement made of quartz pebbles can be noticed in a photograph taken by Angèle Aguigah in 1989 and inserted into her PhD dissertation on pavements (Aguigah, 1995: 361). This photograph illustrates the fact that Willett had probably made the choice not to backfill the unit but to leave it open for visitors to be able to appreciate the stratigraphic connection between the two pavements. This is no longer the case today. A sign board at the site indicates that a second excavation—possibly of exactly the same spot—was carried out by M. O. Adesina in 2008. At the time of our excavation, M. O. Adesina was the Director of Research at the NCMM. He generously took some of his time to visit our team at Ile-Ife, but all attempts to retrieve a copy of the report filed after the 2008 excavation proved abortive. The nature of the 2008 archaeological intervention remains undocumented, but it unfortunately resulted in the back-filling of the north-western corner of the pavement. We strongly advocate for the reopening of the unit and the reinvestigation of the stratigraphic relation between the two pavements.

Potsherd pavements at Ile-Ife should be subjected to a systematic survey and study. There is a need to develop a specific methodology to study them as chronological indicators, and also as a reflection of the production and circulation of ceramics in Ife, and between Ife and the surrounding towns. For instance, potsherd pavements could shed light on economic and tributary relations between Ife and the neighboring towns and villages, since many agricultural products and other goods traded or brought as tribute would have circulated in clay containers. Our understanding of variations in space and time of pottery in south-western Nigeria is not sophisticated enough to enable us to do so yet. A previous attempt to compare the chemical signature of potsherd pavements in six different sites of
southwestern Nigeria proved inconclusive as the sherds tested were made of “similar kinds of clay using a virtually similar method of fabrication” (Ige et al., 2008: 98). The authors concluded that similarity in the regional geology “will make provenancing very problematic” (Ibid.: 96). In the meantime, we think it is urgent to build a project to record what is left of these pavements and create a GIS that will enable us to map and interpret thousands of scattered remains of the past urbanization processes at Ile-Ife, which have never been studied in a comprehensive manner. Such a project should also look at the preservation of some of the remaining pavements. We think it will be necessary to involve specialists in the conservation of mosaics who could develop an appropriate protocol for the conservation of the pavements and provide training in conservation techniques to the staff of the National Museum at Ile-Ife.

D.2 Reconnaissance of Sungbo’s Eredo: Plans for Summer 2016

D.2.1 Sungbo’s Eredo at Oke Eri
On June 20, 2015, a group of 10 archaeologists travelled to Oke Eri, a village in Ogun State crossed by a section of the large territorial enclosure known as Sungbo’s Eredo. This site has been the focus of a series of test excavations by a team of the Department of Archaeology and Anthropology of the University of Ibadan, under the supervision of D. A. Aremu. One of his students, J.-M. Ogiogwa, is expected to defend her PhD about this site soon.

Professor Aremu was kind enough to prepare our visit. We first paid a visit to the local traditional authority, Baale Bisiriyu Olatan Olugbosi and to several caretakers before heading to the site, which had been cleared in advance to allow access to our party.

The site is characterized by a very large bank covered by a gallery forest, which makes it almost invisible behind a thick curtain of vegetation (Fig. 15).
Fig. 15: Forest gallery covering earthwork at Oke Eri, Ogun State © Ife–Sungbo Archaeological Project

Pictures taken with our photography drone enabled us to follow it across the landscape. The ditch that reinforced the bank on its outer side has become almost invisible from the surface, but our drone was able to capture a series of aligned depressions that are probably the remains of the original ditch. During the rainy season, water still accumulates in these depressions (Fig. 16). Other interesting features picked up by the drone will need to be investigated further (Fig. 17).
This is a very interesting site, but its proximity to a shrine renders access quite complicated. Also, the site has already been investigated quite thoroughly by a team of
colleagues from Ibadan, whose material and records we can still access. We therefore decided this site was not a priority for the 2016 archaeological season.

D.2.2 Sungbo’s Eredo at Eredo and Ilara-Epe

On June 21, 2015, we drove to Eredo in Lagos State, where visits to the embankment are organized by the local community. The proximity of the Lagos metropolis and its large community of expatriates provide a small number of visitors. Our team took the tour and wandered along the impressive banks with representatives of the community. The embankment is in a relatively good state of conservation, although urban extension just at its edge threatens to destroy part of the banks. This was observed directly by our team during our walking survey, and one of these endangered sites was photographed, its stratigraphy recorded, and a few charcoal samples from its core were collected for radiocarbon dating.

A visit to the Baale of Eredo proved to be very encouraging as we were guaranteed the support of the local communities in any archaeological research we would be ready to undertake on this site.

Our drone enabled us to take very interesting photographs of the embankment entirely engulfed in a gallery forest running through farmlands. We were able to photograph a rather complex network of gallery forests which may indicate the presence of two systems of embankment intersecting at right angles (Fig. 18).

![Fig. 18: Drone photograph of the embankment within the perimeter of the Augustine University, Ilara, Lagos State. Note what seems to be a double ditch-and-banks system](image)

We concluded that Eredo is a possible site for an excavation in Summer 2016.
Next to Eredo, we went to Ilara-Epe, a neighboring community. Reports received by Gérard Chouin in 2013 from Guus Hak, a Dutch independent contractor with an interest in environmental conservation, mentioned the fact that a new Catholic (Augustinian) university campus built at Ilara under the authority of the Archbishop of Lagos included a portion of Sungbo’s Eredo. Our team decided to visit the site to assess the impact of construction work on the monument and, eventually, to assess the possibility of excavating the site.

On arrival, we realized that the university had not yet started its activities and we could not access the site. Security agents informed us that the opening of the site was scheduled for September 2015. Posts on the website of the Augustine University at Ilara (AUI) (www.augustineuniversity.edu.ng) confirm this information; the formal inauguration is planned to take place on October 23, 2015.

On our visit, workers were still busy fencing its large campus. From the roadside, we used our drone to get an aerial view of the campus, and we were able to determine that a large portion of the embankment crossed a part of the campus not yet developed. Although parts of the ditch seem to have been filled to allow the construction of a new access road, our aerial reconnaissance shows that large sections of the monument lie intact behind the fence of the new university. Photographs we took show what seem to be two ditch systems running in parallel. We believe that this site is worth investigating, pending the authorization of the university’s governing council. We are very excited at the prospect of working within the campus of the Augustine University at Ilara, because we may have opportunities to engage in educational and research activities with students and faculty to promote the protection of the site.

In the coming months, we will reach out to the Vice-Chancellor of the AUI University to study the feasibility of such a collaboration. If we receive a positive response, we would consider focusing on this site rather than on the Eredo site in Summer 2016.

E. Archival research

E.1 Ile-Ife court records
We took advantage of the presence of several historians among us to work in a little-known series of archival records held in the Hezekiah Ilesanmi Library of OAU. In a small room, we examined 7 volumes out of 48 representing the customary court records of Ile-Ife. Other neighboring villages are also represented in the collection with for instance 30, 28 and 20 volumes for Modakeke, Ipetumodu and Ifewara respectively. This collection, which covers the 20th century up to the 1960s, was constituted by Professor Saburi Oladeni Biobaku (1918–2001), who harvested the volumes in the different communities, probably in the mid-1970s. Biobaku was a pioneer of Yoruba historiography with a specific interest in sources of Yoruba history. He is remembered, among other works, as the editor of a classic volume entitled Sources of Yoruba History, published in
1973. Unfortunately, the collection of court records he brought together is not properly maintained, is seldom used, and is gradually being lost to mold.

Equipped with face masks, Joseph O. Ayodokun, Keith Bratton, and James Renton spent several mornings going through some of the volumes, looking for references to the Ile-Ife city walls. It was expected that they would be mentioned as boundaries in the framework of land disputes brought to the native court. Only a few references were found, and the collection seems to be of limited interest for our purposes. However, it was found to be extremely valuable for the study of colonial Nigeria, as it provides a unique emic perspective on Nigerian communities during this time period.

E.2 Papers of Professor Frank Willett, University of Glasgow

Prior to the beginning of the project, an Internet search had revealed the existence of an extensive archival collection comprising the papers of Professor Frank Willett, who, after his excavations at Ile-Ife and a teaching period at Northwestern University, was the Director of the Hunterian Museum and Art Gallery at the University of Glasgow from 1976 to his retirement in 1990.

The catalogue of this impressive collection, which occupies 18.6 linear meters under the references ACCN 3120, 3595 and 3523, is available online (http://archiveshub.ac.uk/data/gb248-accn3120-accn3495-accn3523.pdf). Under ACCN 3120, we were particularly intrigued by a series of unpublished photographs (some of which dated from the period Willett excavated at Ita Yemoo), his correspondence files, his field notes on Ita Yemoo, and a category labeled “material relating to Ita Yemoo, 1960–1990.”

As we noted above, Frank Willett did not publish much of his archaeological work at Ita Yemoo. The prospect of accessing his field records to better understand what was recorded in 1961–2 was particularly exciting. Exploratory work was conducted during Summer 2015 on the Willett papers at Glasgow by James Renton, a former student at William & Mary and now at St Andrews University, Scotland. He was able to send us a sample of the material left behind by our late colleague. Like all field notes, this material is not easy to understand, but the writings are clear and we believe his record system can be understood (see some samples in Figs. 17 and 18). The analysis and interpretation of his records should provide us with considerable material to compare with our own records of the excavations at Ita Yemoo.

In Spring 2016, Gérard Chouin plans to spend a few days in the archives of the Hunterian Museum to reproduce the entire set of Willett’s material related to Ita Yemoo.
Fig. 19: A page excerpted from the field book used by Frank Willett during the excavation of the embankment at Ita Yemoo during his 1962–3 excavation season © Frank Willett

Fig. 20: A black-and-white unpublished photograph of the trench excavated by Frank Willett through the city walls of Ille-Ife at Ita Yemoo, 1962 © Frank Willett
F. On-going and projected analyses

F.1 Sedimentology
Samples of soils were recovered from the different units excavated at Ita Yemoo. These samples are being analyzed by Alain Person at the Université Pierre et Marie Curie (Paris VI).

F.2 Radiocarbon dating
A large quantity of charcoal and charred palm nuts was recovered from the excavations. A sample of 10 specific samples collected in the stratigraphic section is waiting for additional funding (ca $5000) in order to be processed by Beta Analytics.

F.3 Glass analysis
Only 1 glass bead was recovered from Ita Yemoo. Spectrometric analysis will be conducted by Gérard Chouin at the Center for Applied Science, William & Mary, to determine if it was locally manufactured or imported from Europe.

F.4 Local ceramic analysis
A large quantity of local ceramic was recovered during the 2015 season. It has been washed, sorted, and labeled before being stored in the storage facility of the Natural History Museum, OAU, Ile-Ife. The study of this material will be conducted in Summer 2016.

G. Output

Our 2-year publication plan on the 2015 archaeological season includes the following projects:

- A collaborative article in English on the archaeology of Ile-Ife, presenting the new proposed chronology for the depositional history of Ita Yemoo and the new set of radiocarbon dates. Ideally, we will propose it for publication in the Journal of African History, in echo to Willett’s article published on the same topic in 1960.
- A collaborative article in English on the use of Willett’s field notes as comparative material, to be proposed for publication in History in Africa.
- A collaborative article providing a detailed discussion of the archaeology of Ita Yemoo to be proposed for publication in the African Archaeological Review or in the Journal of African Archaeology.
- An article in French on Ile-Ife to be proposed for publication in Afriques, Archéologie & Arts.
- A short report in Nyame Akuma, the Newsletter of the Society of Africanist Archaeologists.
- A popularizing article in French for Archaeologia.
H. References

